Involutive generators and actions for the group Phi_{2}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 272011
(http://iopscience.iop.org/0305-4470/27/6/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:13

Please note that terms and conditions apply.

Involutive generators and actions for the group $\boldsymbol{\Phi}_{\mathbf{2}}$

Peter Kramer
Institut für Theoretische Physik der Universitảt Tlbingen, 72076 Tübingen, Germany

Received 20 August 1993

Abstract

The automorphisms of the free group F_{2} form the group Φ_{2}. Three involutions are shown to generate Φ_{2}. The homomorphism $h_{2}: \Phi_{2} \rightarrow G l(2, Z)$ induced by the Abelianization $h_{1}: F_{2} \rightarrow Z^{2}$ is generated by three affine reflections $R^{3} \rightarrow R^{3}$. The actions of Φ_{2} induced by the homomorphisms $F_{2} \rightarrow S U(2), S U(1,1), S I(2, C)$ are generated by algebraic involutions and geometric reflections.

1. The group $\boldsymbol{\Phi}_{\mathbf{2}}$

Nielsen, in 1924 (compare [1, 2]), gave generators and relations for the automorphism group Φ_{n} of the free group F_{n}. We shall use the symbols Φ_{n} for the group and $\operatorname{Aut}\left(F_{n}\right)$ for its action on F_{n}. Let h_{1} denote the homomorphism from F_{n} to the Abelian group Z^{n} with n generators. This Abelianization yields a second homomorphism $h_{2}: \Phi_{n}=\operatorname{Aut}\left(F_{n}\right) \rightarrow$ $G l(n, Z)=\operatorname{Aut}\left(Z^{n}\right)$. The groups ($Z^{n}, G L(n, Z)$) are the basis for classical (periodic) crystallography [3]. The groups (F_{n}, Φ_{n}) were proposed in [4] as a basis for non-periodic quasicrystallography. Some specific results in this direction were given in [5-7]. We present in sections 1-3 some general results for Φ_{2} and in sections 4-6 for its induced action in various real and complex geometries. For applications of these actions in physics we refer to $[6,8-10]$ and to the references quoted therein.

First we introduce a new set of generators for Φ_{2}. For $n=2$, Nielsen showed that Φ_{2} has three generators (σ, P, U) with relations

$$
\begin{aligned}
& R_{1}, R_{2}: \sigma^{2}=P^{2}=e \\
& R_{3}:(P \sigma P U)^{2}=e \\
& R_{4}: U^{-1} P U P \sigma U \sigma P \sigma=e \\
& R_{5}: U \sigma U \sigma=\sigma U \sigma U .
\end{aligned}
$$

Note that, with the additional relation $(U \sigma)^{2}=e, \Phi_{2}$ reduces to $G l(2, Z)[1]$.
Define the group G with generators $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ and relations

$$
\begin{align*}
& Q_{1}, Q_{2}, Q_{3}:\left(c_{2}\right)^{2}=\left(c_{3}\right)^{2}=\left(\sigma_{1}\right)^{2}=e \\
& Q_{4}:\left(c_{2} c_{3}\right)^{3}=e \\
& Q_{5}:\left(c_{3} \sigma_{1}\right)^{4}=e \tag{2}\\
& Q_{6}: \sigma_{1} c_{2}\left(\sigma_{1} c_{3}\right)^{2} c_{2} \sigma_{1}=c_{2}\left(\sigma_{1} c_{3}\right)^{2} c_{2} .
\end{align*}
$$

Note from $Q_{1}-Q_{5}$ that $\left\langle c_{2}, c_{3}\right\rangle$ and $\left\langle c_{3}, \sigma_{1}\right\rangle$ generate Coxeter groups.

Proposition 1. The groups Φ_{2} and G are isomorphic.
Proof. An easy calculation shows that the isomorphism is established by setting

$$
\begin{equation*}
\sigma=\sigma_{1} \quad P=\sigma_{1} c_{3} \sigma_{1} \quad U=c_{3} \sigma_{1} c_{3} c_{2} \tag{3}
\end{equation*}
$$

with the inverse

$$
\begin{equation*}
\sigma_{1}=\sigma \quad c_{3}=\sigma P \sigma \quad c_{2}=\sigma P \sigma P \sigma U \tag{4}
\end{equation*}
$$

The sets of relations R_{1}, \ldots, R_{5} and Q_{1}, \ldots, Q_{6} become equivalent.
Proposition 2. The subgroup \mathcal{F}_{2} generated by

$$
\begin{align*}
& t_{1}:=\left(c_{3} c_{2} \sigma_{1} c_{3} \sigma_{1}\right)^{2} \\
& t_{2}:=\left(\sigma_{1} c_{3} \sigma_{1} c_{3} c_{2}\right)^{2} \tag{5}
\end{align*}
$$

is normal in Φ_{2}.
Proof. It suffices to conjugate $\left\langle t_{1}, t_{2}\right\rangle$ with the generators of Φ_{2}. We obtain

$$
\begin{array}{ll}
c_{2} t_{1} c_{2}=t_{1} t_{2} & c_{2} t_{2} c_{2}=t_{2}^{-1} \\
c_{3} t_{1} c_{3}=t_{2}^{-1} & c_{3} t_{2} c_{3}=t_{1}^{-1} \tag{6}\\
\sigma_{1} t_{1} \sigma_{1}=t_{1}^{-1} & \sigma_{1} t_{2} \sigma_{1}=t_{2}
\end{array}
$$

The last two results require the use of relation Q_{6}.
There is a second normal subgroup of Φ_{2} :
Proposition 3. The subgroup \mathcal{H}_{2} generated by the involutions

$$
\begin{equation*}
q_{1}=c_{2}\left(\sigma_{1} c_{3}\right)^{2} c_{2} \quad q_{2}=c_{3} c_{2}\left(\sigma_{1} c_{3}\right)^{2} c_{2} c_{3} \quad q_{3}=\left(\sigma_{1} c_{3}\right)^{2} \tag{7}
\end{equation*}
$$

is normal in Φ_{2}. The normal subgroup \mathcal{F}_{2} is the subgroup of \mathcal{H}_{2} generated by an even number of involutions.

Proof. For the normal property we conjugate $\left\langle q_{1}, q_{2}, q_{3}\right\}$ with the generators of Φ_{2} to obtain, with the help of $Q_{1} \ldots Q_{6}$,

$$
\begin{array}{lll}
c_{2} q_{1} c_{2}=q_{3} & c_{2} q_{2} c_{2}=q_{2} & c_{2} q_{3} c_{2}=q_{1} \\
c_{3} q_{1} c_{3}=q_{2} & c_{3} q_{2} c_{3}=q_{1} & c_{3} q_{3} c_{3}=q_{3} \tag{8}\\
\sigma_{1} q_{1} \sigma_{1}=q_{1} & \sigma_{1} q_{2} \sigma_{1}=q_{3} q_{2} q_{3} & \sigma_{1} q_{3} \sigma_{1}=q_{3}
\end{array}
$$

This shows the normal property of \mathcal{H}_{2}. The normal subgroup and even property of \mathcal{F}_{2} follow from the relations

$$
\begin{equation*}
t_{1}=q_{2} q_{3} \quad t_{2}=q_{3} q_{1} \tag{9}
\end{equation*}
$$

2. Φ_{2} and the geometry of automorphisms of \boldsymbol{F}_{2}

To recognize Φ_{2} as the group $\operatorname{Aut}\left(F_{2}\right)$ we must give its action on F_{2}. By using the prescription due to Nielsen [1] and equation (4) we obtain for the images $\left\langle y_{1}, y_{2}\right\rangle$ of $\left\langle x_{1}, x_{2}\right\rangle$, under the generators of Φ_{2}, the following transformations

$$
\begin{array}{lll}
c_{2}: & y_{1}=x_{1} x_{2} & y_{2}=x_{2}^{-1} \\
c_{3}: & y_{1}=x_{2}^{-1} & y_{2}=x_{1}^{-1} \tag{10}\\
\sigma_{1}: & y_{1}=x_{1}^{-1} & y_{2}=x_{2} .
\end{array}
$$

The group $A_{2} \sim\left\langle c_{2}, c_{3}\right\rangle<\Phi_{2}$ generalizes for F_{n} into the non-commutative Coxeter group $A_{n}\left\langle\Phi_{n}\right.$. Consider now the images y_{1}, y_{2} for the elements in equation (5) of Φ_{2} :

$$
\begin{array}{lll}
t_{1}=\left(c_{3} c_{2} \sigma_{1} c_{3} \sigma_{1}\right)^{2}: & y_{1}=x_{1} & y_{2}=x_{1}^{-1} x_{2} x_{1} \tag{11}\\
t_{2}=\left(\sigma_{1} c_{3} \sigma_{1} c_{3} c_{2}\right)^{2}: & y_{1}=x_{2}^{-1} x_{1} x_{2} & y_{2}=x_{2}
\end{array}
$$

These two elements are seen to generate the inner automorphisms of F_{2}. For Φ_{2} acting on F_{2} the kernel $\operatorname{ker}\left(h_{2}\right)$ is known to coincide with the group of inner automorphisms of F_{2} [1]. In turn, the group of inner automorphisms of F_{2} is easily shown to be isomorphic to F_{2} acting by conjugations. Therefore we obtain:

Proposition 4. The group $\operatorname{ker}\left(h_{2}\right)$ is the normal subgroup \mathcal{F}_{2} of Φ_{2} generated by $\left\langle t_{1}, t_{2}\right\rangle$ (equation (5)) and is isomorphic to F_{2}.

The abstract conjugation transformations of the generators of this normal subgroup under the generators of Φ_{2} were given in equation (6). With $\left(t_{1}, t_{2}\right) \leftrightarrow\left(x_{1}, x_{2}\right)$, the correspondence of the action by conjugations (6) on (t_{1}, t_{2}) to the action by automorphisms (10) on (x_{1}, x_{2}) is evident. For the multiplication of these transformations note that from equation (6) we compose conjugations whereas from equation (10) we must compose automorphisms according to Nielsen [1].

Now we shall represent F_{2} by a graph suggested by the Fricke-Klein geometry $[6,7]$, and interpret the relations obeyed by Φ_{2} in terms of this graph.

Consider a 2D quadratic or linear surface \mathcal{S} in R^{3}, lines on \mathcal{S} formed from intersections with planes through a fixed point P_{0} outside \mathcal{S}, and directed segments on these lines. We require that any two distinct points on \mathcal{S} together with P_{0} fix a plane and a line. These properties apply to the following particular geometries. For $S U(2)$ geometry, \mathcal{S} is the unit sphere around the origin P_{0} and the segments are directed arcs on great circles. For $S U(1,1)$ geometry, \mathcal{S} is one of the three unit hyperboloids in which the planes pass through the origin P_{0} and define hyperbolic segments. For planar geometry, \mathcal{S} is a plane and P_{0} is a point not in \mathcal{S}. Given one of these geometries, we choose two fixed intersecting lines and associate the generators $\left\{x_{1}, x_{2}\right\}$ of F_{2} with two directed segments or paths on these lines with the convention that the segment may be moved on the line. We interpret multiplication in F_{2} by path concatenation and inversion by a change of direction. Define x_{3} by $x_{3}=\left(x_{1} x_{2}\right)^{-1}$, which is a well defined line segment, so that $x_{1} x_{2} x_{3}=e$ is a closed directed path around a triangle T. We denote each vertex of this triangle by the number of the opposite path.

The group Φ_{2} acts as $\operatorname{Aut}\left(F_{2}\right)$ on F_{2} and must transform the triangle T into its image T^{\prime}. We shall discuss now these transformations in the path geometry and examine in particular the relations Q_{1}, \ldots, Q_{6}. In figure 1 we represent the action of the generators c_{2}, c_{3}, σ_{1} on

Figure 1. Images $T^{\prime}=g(T)$ of the triangle T under the involutions c_{2}, c_{3}, σ_{1}.

Figure 2. Images $T^{\prime}=g(T)$ of the triangle T under six conjugations of σ_{1} with the group generated by $\left\langle c_{2}, c_{3}\right\rangle$.
the triangle in the planar geometry. The first two generators simply permute pairs of vertices of T. The Coxeter group $A_{2}=\left\langle c_{2}, c_{3}\right\rangle$ determined by Q_{1}, Q_{2}, Q_{4} consists of all vertex permutations of T. The generator σ_{1} yields a new triangle T^{\prime} which shares an edge with T and has a new vertex 2^{\prime} on the line passing through vertices 2,3 . This is an involution in agreement with Q_{3}. By conjugation with the six elements of A_{2} we obtain six involutions similar to σ_{1} which are shown in figure 2. The powers of $\left(\sigma_{1} c_{3}\right),\left(\sigma_{1} c_{3}\right)^{4}=e$ (relation Q_{5}), are shown in figure 3-they generate a parallelogram. The Coxeter group generated by $\left\langle c_{3}, \sigma_{1}\right\rangle$ maps this parallelogram into itself. The element t_{2} (equation (5)), generated as a square of an automorphism, is shown in figure 4. Together with t_{1} it generates discrete 'parallel transports' of T along lines passing through the edges 1,2 of the original triangle.

The distance of the parallel transport is twice the length of the line segment. The relation Q_{6} implies that a refiection σ preserving this edge of T commutes with parallel transport of T along this line.

Figure 3. Images $T^{\prime}=g(T)$ of the triangle T under powers of the automorphism ($c_{3} \sigma_{1}$).

Figure 4. Parallel transport of the triangle T by the square t_{2} of the automorphism $\left(\sigma_{1} c_{3} \sigma_{1} c_{3} c_{2}\right)$.

3. Planar geometry and the homomorphism $h_{2}: \Phi_{2} \rightarrow G l(2, Z)$

In this section we examine the action of Φ_{2} in the planar geometry in terms of certain reflections. We show that the homomorphism $h_{2}: \Phi_{2} \rightarrow G l(2, Z)$ appears in this geometry and is generated by three non-Weyl reflections.

Let r be a vector in R^{3} and ϕ_{r} a linear form with the property $\phi_{r}(r)=-2$. The linear map $R^{3} \rightarrow R^{3}$

$$
\begin{equation*}
\left(r, \phi_{r}\right): x \rightarrow \boldsymbol{x}^{\prime}=\boldsymbol{x}+\phi_{r}(x) r \tag{12}
\end{equation*}
$$

is easily shown to be an involution. All points \boldsymbol{y} of the plane $\phi_{r}(\boldsymbol{y})=0$ are stable under this involution.

Proposition 5. Let $\xi^{1}, \xi^{2}, \xi^{3}$ be linearly independent unit vectors in R^{3}. The action of Φ_{2} on F_{2} in the plane containing the three points $\xi^{1}, \xi^{2}, \xi^{3}$ is generated by three involutions of the type given in equation (12).

Proof. It suffices to construct the three involutions for the generators $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ of Φ_{2}. We specify three pairs (r, ϕ_{r}), where each linear form is fixed by giving its value for three vectors:
$c_{2}: r=\left(\xi^{3}-\xi^{1}\right) \quad \phi_{r}: \phi\left(\xi^{2}\right)=\phi\left(\frac{1}{2}\left(\xi^{3}+\xi^{1}\right)\right)=0 \quad \phi\left(\xi^{3}-\xi^{1}\right)=-2$
$c_{3}: r=\left(\xi^{1}-\xi^{2}\right) \quad \phi_{r}: \phi\left(\xi^{3}\right)=\phi\left(\frac{1}{2}\left(\xi^{1}+\xi^{2}\right)\right)=0 \quad \phi\left(\xi^{\mathrm{I}}-\xi^{2}\right)=-2$
$\sigma_{1}: r=\left(\xi^{2}-\xi^{3}\right) \quad \phi_{r}: \phi\left(\xi^{1}\right)=\phi\left(\xi^{3}\right)=0 \quad \phi\left(\xi^{2}-\xi^{3}\right)=-2$.
From them we compute, with the help of equation (12), the action on the three vectors $\left(\xi^{1}, \xi^{2}, \xi^{3}\right)$ and obtain for their images
$\left(\zeta^{1}, \zeta^{2}, \zeta^{3}\right)=\left(\xi^{1}, \xi^{2}, \xi^{3}\right) D(q)$
$D\left(c_{2}\right)=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \quad D\left(c_{3}\right)=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \quad D\left(\sigma_{1}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1\end{array}\right]$.
These linear maps transform $R^{3} \rightarrow R^{3}$, transform the affine plane \mathcal{S} containing the points $\xi^{1}, \xi^{2}, \xi^{3}$ into \mathcal{S} and also yield the correct images of the three vectors according to the path construction of section 2 .

The similarity to the spherical and hyperbolic cases [6,7] may be seen from the real versions of equation (35) given below: Write equation (35) in terms of the three vectors and use equation (24) to obtain reflections similar to equation (14). In contrast to equation (14), the reflections (35) are not given as actions $R^{3} \rightarrow R^{3}$ which conserve the surface \mathcal{S}.

We now add some comments on the non-Weyl reflections. Given a fixed global scalar product \langle, \rangle on R^{3}, we could choose $\phi_{r}(x)=-2\langle x, r\rangle /\langle r, r)$. Then equation (12) would become a Weyl reflection. In the present case the involution $c_{1}=c_{2} c_{3} c_{2}$ has the same vector as σ_{1} but differs in the linear form ϕ (see figure 5). It is impossible to describe both maps with a single global metric and we are forced to use non-Weyl reflections. For comparison with the Gram construction in a Coxeter group, we compute the matrix M with entries $-\frac{1}{2} \phi_{r_{j}}\left(r_{j}\right)$ and obtain

$$
M=\left[\begin{array}{lll}
1 & 1 & 1 \tag{15}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Clearly $\operatorname{det}(M)=0$, so that the present affine construction resembles the representation of an affine Coxeter group.

The generators (t_{1}, t_{2}) of $\operatorname{ker}\left(h_{2}\right)$ are represented by two commuting translations in the affine plane. We display the action within the affine plane by introducing the relative vectors $\left(x^{1}, x^{2}\right)=\left(\xi^{2}-\xi^{3}, \xi^{3}-\xi^{1}\right)$. These vectors are transformed with the 2×2 subrepresentation d into
$d\left(c_{2}\right)=\left[\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right] \quad d\left(c_{3}\right)=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right] \quad d\left(\sigma_{1}\right)=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
These matrices are precisely the images of the generators (equation (10)) under the homomorphism $h_{2}: \Phi_{2} \rightarrow G l(2, Z)$. We summarize the result:

Figure 5. The vectors and reflection lines for the three generating involutions $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ and for $c_{1}=c_{2} c_{3} c_{2}$ in the affine plane.

Proposition 6. The group Φ_{2} in R^{3} has a (linear) representation D generated by three affine non-Weyl reflections in R^{3}. The normal subgroup $\operatorname{ker}\left(h_{2}\right)$ is represented by commuting affine translations. A subrepresentation d of Φ_{2} yields the homomorphism $h_{2}: \Phi_{2} \rightarrow G l(2, Z)$.

In figure 5 we indicate the pairs (r, ϕ_{r}) by vectors and reflection lines for the three generators $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$. In figure 6 we give an initial triangle T, its images under transformations of the type $\left(c_{3} \sigma_{1}\right)^{n}$, and some of their congruent or mirror images. Clearly there are more non-congruent images. The full pattern is symmetric under translations by twice the segment length of x_{1}, x_{2}, respectively. The reflection lines of figure 5 generate elements of order three and four and an apparent element of order six which is in $G l(2, Z)$ but not in Φ_{2}.

4. Reflections in $S l(2, C)$

A homomorphism $F_{2} \rightarrow \operatorname{Sl}(2, C)$ is specified by a map $\left(x_{1}, x_{2}\right) \rightarrow\left(g_{1}, g_{2}\right), g_{1}, g_{2} \in$ $S l(2, C)$. In sections $4-6$ we study the action of Φ_{2} on $S l(2, C)$ induced by this homomorphism. As in [11] we describe pairs of elements of the group $S l(2, C)$ in terms of three unit vectors. Here we introduce new algebraic reflections generated by these vectors and express the elements of $S L(2, C)$ as products of these reflections. The commutator of two elements of $S l(2, C)$ is given in terms of these vectors.

We shall use the standard complex scalar and vector products for $S O(3, C)$. Consider elements g of $S l(2, C)$ and their exponential parametrization

$$
\begin{align*}
& g=\exp (-\theta \tilde{\eta})=\zeta \sigma_{0}-\rho \tilde{\eta} \\
& \tilde{\eta}=\sum_{l} \eta_{l} \sigma_{l} \tag{17}
\end{align*}
$$

where $\zeta=\cosh \theta, \rho=\sinh \theta, \eta$ is a unit vector, $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the Pauli matrices and σ_{0} is the unit matrix in two dimensions. In sections 4 and 5 we shall use the standard symbols

Figure 6. Affine geometry: the triangle T, its images under elements of type $\left(c_{3} \sigma_{1}\right)^{n}$ and some of their congruent or mirror images are shown. The full pattern is symmetric under translations by twice the line segments x_{1}, x_{2}, respectively. The affine reflections generate elements of order three with centres at midpoints of rriangles and elements of order four with centres at midpoints of parallelograms. The apparent six-fold symmetry at the centre occurs as an element of order six in $G l(2, Z)$ but not in Φ_{2}.
σ_{l} for the Pauli matrices since the distinction from the generators of Φ_{2} should be clear in any expression. Given a pair of matrices g_{1}, g_{2}, we define $g_{3}=\left(g_{1} g_{2}\right)^{-1}$. It is shown in [11] that any pair g_{1}, g_{2} determines three unit vectors

$$
\begin{equation*}
\xi^{k} \propto\left(\epsilon_{l j k}\right)^{2}\left(\eta^{l} \times \eta^{j}\right) \tag{18}
\end{equation*}
$$

Construct from the vectors ξ^{l} the matrices $\tilde{\xi}^{l}$, called reflections, and observe

$$
\begin{align*}
& (\tilde{\xi})^{2}=\sigma_{0} \tag{19}\\
& \operatorname{det}(\tilde{\xi})=-1 \tag{20}\\
& \tilde{\xi}^{1} \tilde{\xi}^{2}=\left(\xi^{1} \cdot \xi^{2}\right) \sigma_{0}+\mathrm{i} \sum_{l}\left(\xi^{1} \times \xi^{2}\right)_{l} \sigma_{l} \tag{21}
\end{align*}
$$

So the matrices $\tilde{\xi}$ belong to the subgroup of $G l(2, C)$ with determinant ± 1 and not to $S l(2, C)$.

Proposition 7. The elements, $g_{1}, g_{2}, g_{3}, g_{1} g_{2} g_{3}=e$, have the decomposition

$$
\begin{equation*}
g_{1}=\tilde{\xi}^{2} \tilde{\xi}^{3} \quad g_{2}=\tilde{\xi}^{3} \tilde{\xi}^{1} \quad g_{3}=\tilde{\xi}^{1} \tilde{\xi}^{2} \tag{22}
\end{equation*}
$$

Proof. First we construct from g_{1}, g_{2} the unit vector $\xi^{3} \propto\left(\eta^{1} \times \eta^{2}\right)$ by normalizing the vector product to unit length, and from it we obtain $\tilde{\xi}^{3}$. Clearly $\left(\xi^{3} \cdot \eta^{1}\right)=\left(\xi^{3} \cdot \eta^{2}\right)=0$. For reflections $\tilde{\xi}, \tilde{\eta}$ with $(\xi \cdot \eta)=0$ and $g=\exp (-\theta \tilde{\eta})$ we find that $g \tilde{\xi}$ and $\tilde{\xi} g$ are reflections. Now from g_{2}, g_{3} we construct

$$
\begin{equation*}
\tilde{\xi}^{1}:=\tilde{\xi}^{3} g_{2} \quad \tilde{\xi}^{2}:=\tilde{\xi}^{3} g_{2} g_{3}=\tilde{\xi}^{3} g_{1}^{-1} \tag{23}
\end{equation*}
$$

to obtain the result equation (22).

The matrix form of the reflection simplifies the determination of the vectors $\boldsymbol{\xi}^{i}$ from the group elements g_{1}, g_{2}, g_{3} [11]. From the expressions (22) we can easily verify that $g_{1} g_{2} g_{3}=\sigma_{0}$.

Proposition 8. Let $\boldsymbol{\xi}, \boldsymbol{\eta}$ be unit vectors. Define the map

$$
\begin{equation*}
(\tilde{\xi}, \tilde{\eta}) \rightarrow \tilde{\eta}^{\prime}=\tilde{\xi} \tilde{\eta} \tilde{\xi}=-\tilde{\eta}+2(\xi \cdot \eta) \tilde{\xi} \tag{24}
\end{equation*}
$$

The corresponding adjoint action $(\tilde{\xi}, g) \rightarrow g^{\prime}$

$$
\begin{equation*}
\operatorname{Ad}_{\xi}(g)=g^{\prime}=\tilde{\xi}\left(\zeta \sigma_{0}-\rho \tilde{\eta}\right) \tilde{\xi}=\zeta \sigma_{0}-\rho \tilde{\eta}^{\prime} \tag{25}
\end{equation*}
$$

is an involution in $S l(2, C)$. The factorization (22) of group elements from $\operatorname{Sl}(2, C)$ into products of two matrices of the type $\tilde{\xi}$ generates these group elements as products of two reffections. The adjoint action is obtained in the form $A d_{g_{3}}=A d_{\xi_{1}} A d_{\tilde{\xi}_{2}}$.

Proposition 9. The commutator $K\left(g_{2}, g_{1}\right):=g_{2} g_{1} g_{2}^{-1} g_{1}^{-1}=g_{2} g_{1} g_{3}$, when expressed in terms of the vectors ξ, has the form

$$
\begin{align*}
& K=\left(\tilde{\xi}^{3} \tilde{\xi}^{1} \tilde{\xi}^{2}\right)^{2} \\
& \left.\left(\tilde{\xi}^{3} \tilde{\xi}^{1} \tilde{\xi}^{2}\right)=\mathrm{i}\left(\xi^{1} \times \xi^{2}\right) \cdot \xi^{3}\right) \sigma_{0}+\sum_{l}\left[\left(\xi^{1} \cdot \xi^{2}\right) \xi^{3}-\left(\xi^{2} \cdot \xi^{3}\right) \xi^{1}+\left(\xi^{3} \cdot \xi^{1}\right) \xi^{2}\right]_{l} \sigma_{l} \tag{26}
\end{align*}
$$

The commutator with $\Delta:=\left(\xi^{1} \times \xi^{2}\right) \cdot \xi^{3}$ becomes
$K=\left(1-2 \Delta^{2}\right) \sigma_{0}+2 \mathrm{i} \Delta \sum_{l}\left[\left(\xi^{1} \cdot \xi^{2}\right) \xi^{3}-\left(\xi^{2} \cdot \xi^{3}\right) \xi^{1}+\left(\xi^{3} \cdot \xi^{1}\right) \xi^{2}\right]_{l} \sigma_{l}$.
Specific results for the subgroups $S U(2)$ and $S U(1,1)$ are obtained by appropriate restrictions of the parameters: for $S U(2)$ we put $\theta=\mathrm{i} \alpha$ and choose α and the vectors ξ, η to be real. The complex unit sphere reduces to the real unit sphere S_{2} in the geometry of $S O(3, R)$. The results for $S U(2)$ are closely related to the theory of turns treated by Biedenharn and Louck [12] (cf [7]).

For $S U(1,1)$, we use the vector $\eta=\left(q_{1},-q_{2}, i q_{3}\right)$ with real components q_{i} and replace the Pauli matrices according to $\sigma_{1}^{\prime}=\sigma_{1}, \sigma_{2}^{\prime}=-\sigma_{2}, \sigma_{3}^{\prime}=\mathrm{i} \sigma_{3}$ [6]. The complex unit sphere reduces to one of the unit hyperboloids in the geometry of $S O(2,1, R)$. There are relations to the geometry of Fricke and Klein [13] (cf [6]) and to work by Vogt [14]. The three vectors $\boldsymbol{\xi}^{l}$ are always on a single hyperboloid ($\operatorname{cf}[6,7]$).

5. Matrix products in $S l(2, C)$ and reflections

In applications [6] one often generates words in F_{2} by the action of elements from Φ_{2}. The induced action of Φ_{2} on $S l(2, C)$ generates matrix products in $S l(2, C)$. A standard form of these matrix products would be helpful for these applications. Standard forms for the traces of these words are treated in the ring theory of Fricke characters [13-16]. Applications in physics, for example, in the 1D S-matrix problem [6,8], require the knowledge of the full matrix image under the induced action. In the present section we use the reflections introduced in section 4 to express matrix products from n elements of $\operatorname{Sl}(2, C)$ as linear combinations of fundamental matrices.

Let $\xi^{1}, \ldots, \xi^{n+1}$ be a general set of complex unit vectors in the $S O(3, C)$ metric.

Definition 1. The 2^{n+1} fundamental ascending ξ-products are

$$
\begin{equation*}
\sigma_{0}, \prod \tilde{\xi}^{\mu_{1}} \ldots \tilde{\xi}^{\mu_{r}}, \mu_{1}<\mu_{2} \ldots<\mu_{r} \quad 1 \leqslant r \leqslant n+1 \tag{28}
\end{equation*}
$$

Proposition 10. Any product \prod^{\prime} of degree q formed from the matrices $\tilde{\xi}^{j}$ can be written as a linear combination of the fundamental matrix products (28). The linear coefficients are polynomials in the scalar products $\left(\xi^{i} \cdot \xi^{j}\right), i<j$ with integral coefficients.

Proof. For any descending pair of subsequent matrices in Π^{\prime} we apply equation (21) in the form

$$
\begin{equation*}
s>t: \tilde{\xi}^{s} \tilde{\xi}^{t}=-\tilde{\xi}^{t} \tilde{\xi}^{s}+2\left(\xi^{t} \cdot \xi^{s}\right) \sigma_{0} \tag{29}
\end{equation*}
$$

Substitution in Π^{\prime} yields the ascending order for this pair and introduces an additional matrix product term of degree $q-2$, where the pair is replaced by twice the scalar product. A finite number of these steps leads to an ascending order in all matrix terms.

We pass from the $n+1$ reflections to n elements h_{i} of $S l(2, C)$. We use the letters h_{i} rather than g_{i} since their indexing differs from the one used in equation (22).

Proposition 11. Let $h_{i}, i=1,2, \ldots, n$, be general elements of $S l(2, C)$. There exist $n+1$ reflections $\tilde{\xi}^{j}, j=1,2, \ldots, n+1$, so that

$$
\begin{equation*}
h_{i}=\tilde{\xi}^{i} \tilde{\xi}^{i+1} \quad i=1, \ldots, n . \tag{30}
\end{equation*}
$$

Proof. We assume that the unit vectors η^{i-1}, η^{i}, which generate $h_{i-1}, h_{i}, i=2, \ldots, n$, are linearly independent and define by normalization up to a sign

$$
\begin{equation*}
\xi^{i} \propto \eta^{i-1} \times \eta^{i} \quad i=2, \ldots, n \tag{31}
\end{equation*}
$$

Fixing a sign for ξ^{2}, we determine ξ^{1} from the reflection $\tilde{\xi}^{1}:=h_{1} \tilde{\xi}^{2}$ to obtain $h_{1}=$ $\tilde{\xi}^{1} \tilde{\xi}^{2}, \eta^{1} \propto \xi^{1} \times \xi^{2}$. Now, from equation (31), $\xi^{2} \times \xi^{3} \propto\left(\eta^{1} \times \eta^{2}\right) \times\left(\eta^{2} \times \eta^{3}\right) \propto \eta^{2}$ and so we may choose the sign of ξ^{3} from $\tilde{\xi}^{3}=\tilde{\xi}^{2} h_{2}$ to obtain $h_{2}=\tilde{\xi}^{2} \tilde{\xi}^{3}$. Continuing in this fashion we fix all the signs and get the result, equation (30).

Consider now a general product Π^{\prime} formed from $h_{1} \ldots h_{n} \in \operatorname{Sl}(2, C)$.

Definition 2. The 2^{n} ascending fundamental h-products are

$$
\begin{equation*}
\sigma_{0}, \prod h_{\nu_{1}} \ldots h_{\nu_{k}}, \nu_{1}<\nu_{2} \ldots<\nu_{k} \quad 1 \leqslant k \leqslant n . \tag{32}
\end{equation*}
$$

Proposition 12. Any product \prod^{\prime} of degree p formed from n matrices $h_{j} \in S l(2, C)$ can be written as a linear combination in the 2^{n} ascending fundamental matrix products of the h_{j} (32). The linear coefficients are polynomials in the expressions $\frac{1}{2} \operatorname{tr}\left(h_{i} h_{i+1} \ldots h_{i+q-1}\right), q>$ 1, with integral coefficients.

Proof. We rewrite \prod^{\prime} by use of equation (30) as an even product of the $n+1$ reflections $\tilde{\xi}^{i}$. By applying proposition 11, it can be expressed as a linear combination in the even fundamental ascending products of the reflections. Now we observe that from equation (30) for $q>1$

$$
\begin{equation*}
\tilde{\xi}^{i} \tilde{\xi}^{i+q}=h_{i} h_{i+1} \ldots h_{i+q-1} \tag{33}
\end{equation*}
$$

It follows from this equation that any even ascending matrix term in the $\tilde{\xi}^{i}$ can be replaced by an even or odd ascending matrix term in the h_{j}. Moreover the coefficients in the linear combinations may be rewritten in terms of the h_{j} by noting from equation (33) that

$$
\begin{equation*}
\left(\xi^{i} \cdot \xi^{i+q}\right)=\frac{1}{2} \operatorname{tr}\left(h_{i} h_{i+1} \ldots h_{i+q-1}\right) \quad q>1 \tag{34}
\end{equation*}
$$

This proposition generalizes the results of Fricke [$3,15,16$], from the level of characters or traces to the level of matrices.

6. Φ_{2} acting on $S l(2, C)$

Let $\left(x_{1}, x_{2}\right) \rightarrow\left(g_{1}, g_{2}\right)$ be a homomorphism from the free group F_{2} to $S l(2, C)$, and let $\Phi_{2}=\operatorname{Aut}\left(F_{2}\right)$ act on the images $\left(g_{1}, g_{2}\right)$. We shall describe this action with the help of the vectors introduced in section 4 . The new generators of Φ_{2} and the algebraic treatment of reflections yield a new and simplified form of the results given in $[6,7,11]$.

We showed in section 2 that Φ_{2} is generated by the three involutions c_{2}, c_{3}, σ_{1}.
Proposition 13. The generators of Φ_{2} yield, with respect to the matrices $\tilde{\xi}$, the transformations

$$
\begin{align*}
& c_{2}:\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \tilde{\xi}^{3}\right) \rightarrow\left(\tilde{\xi}^{3}, \tilde{\xi}^{2}, \tilde{\xi}^{1}\right) \\
& c_{3}:\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \tilde{\xi}^{3}\right) \rightarrow\left(\tilde{\xi}^{2}, \tilde{\xi}^{1}, \tilde{\xi}^{3}\right) \tag{35}\\
& \sigma_{1}:\left(\tilde{\xi}^{1}, \tilde{\xi}^{2}, \tilde{\xi}^{3}\right) \rightarrow\left(\tilde{\xi}^{1}, \tilde{\xi}^{3} \tilde{\xi}^{2} \tilde{\xi}^{3}, \tilde{\xi}^{3}\right) .
\end{align*}
$$

The first two generators yield transpositions and through them generate the Coxeter group A_{2}. The last generator is expressed by a reflection of one of the three vectors (24). The action (35) of the group Φ_{2} on the three reflections has an exact correspondence to the abstract action of Φ_{2} by conjugation on the three involutive generators of \mathcal{H}_{2} obtained in equation (8).

By Nielsen's theorem [2], under any automorphism of F_{2} the commutator is transformed into a conjugate of itself or of its inverse. The explicit form (26), (27) of K allows us to study this transformation in detail. For the traces it is easy to see from equation (26) that, under any one of the generators equation (35) of Φ_{2}, the quantity $\Delta=-(i / 2) \operatorname{tr}\left(\tilde{\xi}^{3} \tilde{\xi}^{1} \tilde{\xi}^{2}\right)$ is multiplied by a factor (-1). Hence the volume spanned by the three vectors is conserved up to a sign under Φ_{2}, and the usual trace invariant [6] is, from equation (27), $\frac{1}{2} \operatorname{tr}(K)=1-2 \Delta^{2}$. Various applications in physics of actions induced from Φ_{2} to trace and in particular to matrix systems can be treated efficiently with the methods given in sections 4-6.

Acknowledgments

The present work is based in part on studies of non-commutative systems carried out in cooperation with J Garcia-Escudero. His comments, remarks by M Baake on section 2, and by one of the referees on proposition 1 , are gratefully acknowledged by the author.

References

[1] Nielsen J 1924 Math. Ann. 91 169-209
[2] Magnus W, Karrass A and Solitar D 1976 Combinatorial Group Theory 2nd edn (New York: Dover)
[3] Brown H, Bülow R, Neubüser J, Wondratschek H and Zassenhaus H 1978 Crystallographic Groups of Four-Dimenstonal Space (New York: Wiley)
[4] Kramer P 1993 Anales de Fisica vol 1, ed M A Del Olmo and M Santander (Madrid: CIEMAT/RSEF) p 370
[5] Garcia-Escudero J and Kramer P 1993 Anales de Fisica vol 1, ed M A Del Olmo and M Santander (Madrid: CIEMAT/RSEF) p 339
[6] Kramer P 1993 J. Phys. A: Math. Gen. 26 213-28
[7] Kramer P 1993 Free Groups, Their Automorphism Groups, Applications (Symmetries in Science VI) ed B Gruber et al (New York: Plenum)
[8] Baake M, Joseph D and Kramer P 1992 Phys. Lett. 186A 199-208
[9] Baake M, Grimm U and Joseph D 1993 Int. J. Mod. Phys. B 7 1527-50
[10] Peyriere J 1991 J. Stat. Phys. 62 411-4
[11] Kramer P 1993 J. Phys. Lett. A 26 L245-50
[12] Biedenharn L C and Louck I D 1981 Angular Momentum in Quantum Physics: Theory and Applications (Reading, MA: Addison-Wesley)
[13] Fricke R and Klein F 1897 Vorlesungen über die Theorie der Automorphen Funktionen vol 1 (Leipzig: Teubner)
[14] Vogt M H 1889 Ann. Sci. Ecole Norm. Sup. 6 3-71
[15] Magnus W 1980 Math. Z. 170 91-103
[16] Horowitz R 1975 Trans. Am. Math Soc. 208 41-50

