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Involutive generators and actions for the group Cpz 
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Received 20 August 1993 

Abstrad. The automorphism of the free group FZ form the group 4 2 .  Three involutions axe 
shown to generate Q2. The homomorphism hz : 4 2  -+ G l ( 2 . Z )  induced by the Abelianization 
hr : Fz -+ Zz is generated by three &ne reflections R3 + R3,  The actions of 42  induced 
by Ule homomorphisms F2 + SU(2) .  SU(1,l). Sf(2. C) are generated by algebraic involutions 
and geometric reEections. 

1. The group 8 2  

Nielsen, in 1924 (compare [l, 21). gave generators and relations for the automorphism group 
0" of the free group F,. We shall use the symbols 0, for the group and Aut(F,) for its 
action on Fn. Let hl denote the homomorphism from Fn to the Abelian group Zn with 
n generators. This Abelianization yields a second homomorphism h2 : an = Aut(Fn) + 
Gl(n, Z) = Aut(Z"). The groups (Z", GL(n, Z)) are the basis for classical (periodic) 
crystallography 131. The groups (Fn, 0,) were proposed in [4] as a basis for non-periodic 
quasicrystallography. Some specific results in this direction were given in [5-7]. We present 
in sections 1-3 some general results for @Z and in sections 4-15 for its induced action in 
various real and comple+ geomehies. For applications of these actions in physics we refer 
to [6,8-IO] and to the references quoted therein. 

First we in&oduce a new set of generators for #I.  For n = 2, Nielsen showed that 
has three generators (U, P, U )  with relations 

RI, R2 : u2 = Pz = e  

R3 : (PcrPU)' = e  

R4 : U - ' P U P u U o P u  = e  
(1) 

Rs : UUUO = u U ~ U .  

Note that, with the additional relation (Vu)' = e, (P2 reduces to Gl(2, Z )  111. 
Define the group G with generators (cz. c3, u1) and relations 

Q I ,  Qz, 123 : (cd2 = (~3)' = ( ~ 1 ) '  = e 

Q4 : ( ~ 2 ~ 3 ) ~  = e 

QS : (c3u114 = e  
2 

e6 : U i C ~ ( ~ i C 3 ) ~ C z ~ i  = C Z ( U I C ~ )  Cz. 

Note from Ql - QS that (CZ, c3) and (c3, UI) generate Coxeter groups. 

0305-4470/94/062011+12519.50 @ 1994 IOP Publishing Ltd 201 1 
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Proposition 1. 

Pmof. 

The groups 0 2  and G are isomorphic. 

An easy calculation shows that the isomorphism is established by setting 

U = U1 P = UIC3U1 U = c 3 q c 3 c z  (3) 

with the inverse 

01 = U  c 3  = UPU c2 = UPUPUU. (4) 

The sets of relations RI,. . . , R5 and Ql, . . . , Q6 become equivalent. 0 

Proposition 2. The subgroup 3 2  generated by 

tl := (C3C2U,C3UI)~  

22 := (UIC3U1C3C2)2 

is normal in 0 2 .  

Proof. It suffices to conjugate (rl , tz) with the generators of 0 2 .  We obtain 

c2tlcZ = tltz c2tzcz = 

c3tl c3 = t2 

u1t1u1 = t;' 

c 3 t 2 c 3  = t;' 

ult2ul = r2. 

The last two results require the use of relation &. 

There is a second normal subgroup of 0 2 :  

Proposition 3 .  The subgroup 'HZ generated by the involutions 

41 = C2(UlC3)2CZ 42 = c3c2(UlC3)2C2C3 4 3  = ( u l c 3 ) 2  (7) 

is normal in 02. The normal subgroup 3 2  is the subgroup of 'HZ generated by an even 
number of involutions. 

Proof. For the normal properly we conjugate (q1,q2, 43) with the generators of 0 2  to 
obtain, with the help of Ql . . . Q6, 

C241CZ = 4 3  czq2c2 = 42 C243CZ = 41 

C34lC3 = 42 c 3 q m  = 41 C343c3 = 4 3  (8) 

~ l 4 l U l  = 41 ~ 1 4 2 U I  = 4 3 4 2 4 3  U I 4 3 U l  = 43. 

This shows the normal property of 'Hz. The normal subgroup and even property of 3 2  
follow from the relations 
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2. +2 and the geometry of automorphism of FZ 

2013 

To recognize 4 2  as the group Aut(F2) we must give its action on F2. By using the 
prescription due to Nielsen [l] and equation (4) we obtain for the images ( y ~  , yz) of ( X I ,  X Z ) ,  

under the generators of 6 2 ,  the following transformations 

U1 : y' = x;' Y2 = xz. 

The group Az - (cz, c3) < @2 generalizes for F,, into the non-commutative Coxeter group 
An(@". Consider now the images y1, y~ for the elements in equation (5) of 42: 

y2 = x;'x2n1 2 
tl = (caczu1c3u1) : YI =xi 

(1 1) 

These two elements are seen to generate the inner automorphisms of Fz. For 4 2  acting on 
Fz the kernel ker(h2) is known to coincide with the group of inner automorphisms of F2 
111. In turn, the group of inner automorphism of F2 is easily shown to be isomorphic to 
F2 acting by conjugations. Therefore we obtain: 

Proposition 4. The group ker(h2) is the normal subgroup 3 2  of 4 2  generated by (it, 82) 
(equation (5)) and is isomorphic to F2. 

tz = (~lc3ulc3c2)2 : y1 = ~ i q ' x l x z  y2 = xz. 

The abstract conjugation transformations of the generators of this normal subgroup under 
the generators of @2 were given in equation (6). With (tl, tz) e ( X I ,  xz). the correspondence 
of the action by conjugations (6) on ( t l ,  q) to the action by automorphism (10) on (XI. X Z )  

is evident. For the multiplication of these transfomations~ note that from equation (6) 
we compose conjugations whereas from equation (10) we must compose automorphisms 
according to Nielsen [l]. 

Now we shall represent F2 by a graph suggested by the Fricke-Klein geometry 16.71, 
and interpret the relations obeyed by @2 in terms of this gaph. 

Consider a 2D quadratic or linear surface S in R3, lines on S formed from intersections 
with planes through a fixed point PO outside S, and directed segments on these lines. We 
require that any two distinct points on S together with PO fix a plane and a line. These 
properties apply to the following particular geometries. For SU(2)  geometry, S is the unit 
sphere around the origin PO and the segments are directed arcs on great circles. For SU(1, 1) 
geometry, S is one of the three unit hyperboloids in which the planes pass through the origin 
PO and define hyperbolic segments. For planar geometry, S is a plane and Po is a point not 
in S. Given one of these geomehies, we choose two fixed intersecting lines and associate 
the generators ( X I ,  x ~ )  of F2 with two directed segments or paths on these lines with the 
convention that the segment may be moved on the line. We interpret multiplication in Fz 
by path concatenation and inversion by a change of direction. Define x3 by x3 = (xIxz)-~, 
which is a well defined line segment, so that ~ 1 x 2 ~ 3  = e is a closed directed path around a 
triangle T. We denote each vertex of this triangle by the number of the opposite path. 

The group 0 2  acts as Aut(&) on F2 and must a s f o r m  the triangle T~into its image T'. 
We shall discuss now these transformations in the path geometry and examine in particular 
the relations Ql, . . . , Qa. In figure 1 we represent the action of the generators cz. c3, 01 on 
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Figure 1. images T' = g(T) of the triangle T under the involutions c2, c3. al. 

Figure 2. Images T' = g ( T )  of the triangle T under six conjugations of CY, with the group 
generated by (c2, e). 

the triangle in the planar geometry. The first two generators simply permute pairs of vertices 
of T. The Coxeter group Az = (CZ, c3) determined by QI, 92, Q4 consists of all vertex 
permutations of T. The generator ul yields a new hiangle T' which shares an edge with T 
and has a new vertex 2' on the line passing through vertices 2,3. This is an involution in 
agreement with Q3. By conjugation with the six elements of A2 we obtain six involutions 
similar to u1 which are shown in figure 2. The powers of (uIc3), ( 0 1 ~ 3 ) ~  = e (relation 
Q5), are shown in figure 3-they generate a parallelogram. The Coxeter group generated 
by (c3, UI) maps this parallelogram into itself. The element tz (equation (5)), generated as 
a square of an automorphism, is shown in figure 4. Together with tl it generates discrete 
'parallel transports' of T along lines passing through the edges 1,2 of the original triangle. 
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The distance of the parallel transport is twice the length of the line segment. The relation 
Qs implies that a reflection c preserving this edge of T commutes with parallel transport 
of T along this line. 

Figure 3. Images T' = g(T) of the triangle T under powers of the automorphism (ws~), 

. .  

Figure 4. Parallel transport ofthe Mangle T by,the square tz of the automorphism (o~auincz). 

3. Planar geometry and the homomorphism hz : O2 + GZ(2.Z) 

In this section we examine the action of @z in the planar geome!q in terms of certain 
reflections. We show that the homomorphism hz : @* + G l ( 2 , Z )  appears in this geometry 
and is generated by three non-Weyl reflections. 

Let T be a vector in R3 and +? a linear form with the property &(T) = -2. The linear 
map R3 + R3 

is easily shown to be an involution. All points g of the plane +,(g) = O'are stable under 
this involution. 
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Proposition 5. Let cl, E', E3 be liiearly independent unit vectors in R3. The action of @Z 

on Fz in the plane containing the three points c', sz, E3 is generated by three involutions 
of the type given in equation (12). 

Proof. It suffices to construct the three involutions for the generators (cz. q, u1) of @'. 
We specify three pairs (T, &), where each linear form is fixed by giving its value for three 
vectors: 

c:! : T = (E3 - €1) 

U1 : T = (€2 - €3) 

q4r : &) = f# ( f (€3  + E ' ) )  = 0 

q4r : f#J(€1) = q4(53) = 0 

@(E3 - E ' )  = -2 

- €3) = -2. 

c3 : T = (c1 - 5') q4r : $(E3) q4($(C1 + E')) = 0 @(E' - 5') = -2 (13) 

From them we compute, with the help of equation (12). the action on the three vectors 
(<I, E', E3) and obtain for their images 

(C1, C3) = (€I3 E2, E3)Wd 
0 0 1  0 1 0  1 0 0  (14) 

D(cz) = 0 1 0 0] 
D ( c 3 ) = [ i  8 ;] .(Ul)=[: ;l ;I. 

These linear maps transform R3 + It3, transform the affine plane S containing the points 
cl, EZ, E3 into S and also yield the correct images of the three vectors according to the path 
conshuction of section 2. 0 

The similarity to the spherical and hyperbolic cases [6,7] may be seen from the real 
versions of equation (35) given below: Write equation (35) in terms of the three vectors and 
use equation (24) to obtain reflections similar to equation (14). In contrast to equation (14). 
the reflections (35) are not given as actions R3 + R3 which conserve the surface S. 

We now add some comments on the non-Weyl reflections. Given a fixed global scalar 
product ( , ) on R3, we could choose &(z) = -Z(o, T)/(T, T). Then equation (12) would 
become a Weyl reflection. In the present case the involution ct = CZC~CZ has the same 
vector as u1 but differs in the linear form q4 (see figure 5). It is impossible to describe 
both maps with a single global mehic and we are forced to use non-Weyl reflections. For 
comparison with the Gram conshuction in a Coxeter group, we compute the matrix M with 
entries -&&J(~j) and obtain 

M = 1 1 1 .  (15) 

Clearly det(M) = 0, so that the present affine construction resembles the representation of 
an affine Coxeter group. 

The generators (tl , tz) of ker(h2) are represented by two commuting translations in the 
affine plane. We display the action within the affine plane by introducing the relative vectors 
(P', 02) = (€2-E3,  E3 -E1). These vectors are transformed with the 2 x 2  subrepresentation 
d into 

[: 1 :I 

These matrices are precisely the images of the generators (equation (10)) under the 
homomorphism hz : 0 2  -+ GZ(2,Z). We summarize the result: 
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Figure 5. The vectors and reflection lines for the three generating involutions (CI. c). cl) and 
for c1 =hcrez in the afilne plane. 

Proposition 6. The group Q12 in R3 has a (linear) representation D generated by three. 
affine non-Weyl reflections in R3. The normal subgroup ker(h2) is represented by 
commuting affine translations. A subrepresentation d of @z yields the homomorphism 
hz : Qz + GC(2, Z). 

In figure 5 we indicate the pairs (T ,&)  by vectors and reflection lines for the 
three generators (cz, c3, U T ) .  In figure 6 we give an initial triangle T, its images under 
transformations of the type ( C p l ) " ,  and some of their congruent or *or images. Clearly 
there are more non-congruent images. The full pattern is symmetric under translations by 
twice the segment length of xl, xz, respectively. The reflection lines of figure 5 generate 
elements of order three and four and an apparent element of order six which is in Gi(2, Z) 
but not in @z. 

4. Reflections in SI(2 ,C)  

A homomorphism FZ + Sl(2, C )  is specified by a map (XI, XZ) -+ (gl,gz),gl,gz E 
Sl(2, C ) .  In sections 4-6 we study the action of @z on Sl(2, C )  induced by this 
homomorphism. As in [rl]  we describe pairs of elements of the group SZ(2, C) in terms of 
three unit vectors. Here we introduce.new algebraic reflections generated by these vectors 
and express the elements of SL(2, C )  as products of these reflections. The commutator of 
two elements of Sl(2, C )  is given in terms of these vectors. 

We shall use the standard complex scalar and vector products for SO(3, C ) .  Consider 
elements g of Sl(2, C )  and their exponential parametrization 

g = exp(-e+) = (U,, - pij 

where = coshe, p = sinh 8 ,  q is a unit vector, 51, UZ, 5 3  are the Pauli matrices and 00 is 
the unit matrix in two dimensions. In sections 4 and 5 we shall use the standard symbols 
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Figure 6. Affine genmehy: the triangle T, its images under elements of type (c~uI)'  and some 
of theii wngment or mirror images are shown. The full pattern is symmetric under translations 
by twice the line segments XI. xz, respectively. The affine reEections generate elements of order 
three with centres at midpoints of triangles and elements of order four wilh centres at midpoints 
of paralelograms. The apparent six-fold symehy at the centre OCCUIS as an element of order 
six in Gf(Z.2) but not in Oz. 

U! for the Pauli matrices since the distinction from the generators of 9 2  should be clear in 
any expression. Given a pair of matrices gl, gz, we define g3 = (glg2)-l. It is shown in 
[ll] that any pair gl, gz determines three unit vectors 

tk ( c l j k ) 2 ( d  x 4). (18) 

(W = 0 0  (19) 

Construct from the vectors 5' the matrices g l ,  called reflections, and observe 

So the matrices g belong to the subgroup of GZ(2, C) with determinant f l  and not to 
Sl(2, C). 

Proposition 7. The elements, gl, gz, g3, g1g2g3 = e, have the decomposition 

g, = $243  ~g2 = w g3 = g y .  (22) 

Proof. First we construct from gl, gz the unit vector c3 c( (7' x qz) by normalizing the 
vector product to unit length, and from it we obtain g3. Clearly (E3 ;vl) =_(s3 q2) = 0. For 
reflections f ,  6 with (5 .v) = 0 and g = exp(-eij) we find that g( and eg are reflections. 
Now from g2, g3 we construct 

(23) 

0 

-3 -1 $' := g3g2 .$' := g3g2g3 = ( g, 

to obtain the result equation (22). 
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The matrix form of the reflection simplifies the determination of the vectors E' f" 
the group elements gl, gz, g3 1111. From the expressions (22) we can easily verify that 
8182.83 = 00. 

Proposition 8. Let 6, r j  be unit vectors. Define the map 

($, ;r) + f' = $f$ = -6 + 2(< * I?)$. 

Ads(g) = g' = ~ ( C U O  - p f ) $  = <UO - pij' 

(24) 

The corresponding adjoint action ($, g) + g' 

(25)~  

is an involution in Sl(2, C ) .  The factorization (22) of group elements from Sl(2, C )  into 
products of two matrices of the type $ generates. these group elements as products of two 
reflections. The adjoint action is obtained in the form Ad,, =Ad$, Ads,. 

Proposition 9.. The commutator K(g2,  g l )  := g2glg;'g;' = gzg1g3, when expressed in 
terms of the vectors &.has the form 

K = ( t  5 t 1 

($'$'P) = i(E1 x E') . t3)m + 
7 - 1 7  2 

(26) [E' . E')@ - (E' . t3)E1 + (t3 . E1)tZ]l 01. 
1 

The commutator with A := (E1 x 5') . t3 becomes 

K = (1 - 2 A Z ) q  + 2iA (27) 

Specific results for the subgroups SU(2) and SU(l.1) are obtained by appropriate 
restrictions of the parameters: for SU(2) we put B = ia and choose a and the vectors 
E,  r j  to be real. The complex unit sphere reduces to the real unit sphere Sz in the geometry 
of SO(3, R). The results for SU(2) are closely related to the theory of turns treated by 
Biedenharn and Louck [12] (cf [7J). 

For SU(1, l), we use the vector r j  = (41, -42, iqs) with real components qi and replace 
the Pauli matrices according to U; = U',  U; = -uz, U; = iu3 [6]. The complex unit sphere 
reduces to one of the unit hyperboloids in the geometry of SO(2, 1, R). There are relations 
to the geometry of Fricke and Klein [13] (cf (61) and to work by Vogt [141. The three 
vectors E' are always on a single hyperboloid (cf [6,7]). 

[(E' . <')E3 - (5' - &E1 + (E' . f ) E Z ] ,  01. 
1 

5. Matrix products in Sl(2,  C )  and dections 

In applications [6] one often generates words in FZ by the action of elements from @*. The 
induced action of @* on Sl(2, C )  generates matrix products in Sl (2 ,  C ) .  A standard form of 
these matrix products would be helpful for these applications. Standard forms for the traces 
of these words are treated in the ring theory of Fricke characters [13-161. Applications 
in physics, for example, in the ID S-matrix problem [6,8], require the knowledge of the 
full matrix image under the induced action. In the present section we use the reflections 
introduced in section 4 to express matrix products from n elements of SI(2, C )  as linear 
combinations of fundamental matrices. 

Let E ' ,  . . .,e+' be a general set of complex unit vectors in the SO(3, C )  metric. 

I 



2020 P Kramer 

Definition 1. The 2"+' fundamental ascending $-products are 

u o , ~ F ~ ~ . . . 8 " ~ , ~ ~ c ~ . . . < p ,  1 < r < n + 1 .  (28) 

Proposition 10. Any product n' of degree q formed from the matrices $j can be written 
as a linear combination of the fundamental matrix products (28). The linear coefficients are 
polynomials in the scalar products (e . @), i c. j with integral coefficients. 

Proof. For any descending pair of subsequent matrices in n' we apply equation (21) in 
the form 

s > t : B"y = -pc" + 2(.$ * E")UO. (29) 

Substitution in n' yields the ascending order for this pair and introduces an additional 
matrix product term of degree q - 2, where the pair is replaced by twice the scalar product. 

0 

We pass from the n + 1 reflections to n elements hi of Sl(2, C). We use the letters hi 

A finite number of these steps leads to an ascending order in all matrix terms. 

rather than gi since their indexing differs from the one used in equation (22). 

Proposition 11. 
reflections p, j = I ,  2,. . . , n + I ,  so that 

Let hi, i = 1,2,. . . , n, be general elements of Sl(2, C). There exist n+ 1 

h. 1 -  - giF+' i = 1, ..., n. (30) 

Proof. We assume that the unit vectors vi-', 17'. which generate hi-, , hi, i = 2, . . . , n,  
are linearly independent and define by normalization up to a sign 

5' a 9j-I x 7' i = 2 , .  . . , n. (31) 

Fixing a sign for t2, we determine 5' from the reflection $' := hl$' to obtain hl = 
g1g2, q1 a E' x Ez. Now, from equation (31), EZ x E3 m (17' x v2) x (q2 x v3) a and 
so we may choose the sign of c3 from Z3 = t2hz to obtain hz = $z$'. Continuing in this 

0 fashion we fix all the signs and get the result, equation (30). 

Consider now a general product n' formed from hl . . . h, E Sl(2, C). 

Definition 2. The 2" ascending fundamental h-products are 

uo, n h , ,  . . . h,, VI < v z . .  . < Vk 1 < k < n., (32) 

Proposition 12. Any product n' of degree p formed from n matrices hi E Sl(2, C) can be 
written as a linear combination in the 2" ascending fundamental matrix products of the hj 
(32). The linear coefficients are polynomials in the expressions 4 &(hihi+,. . . hi*-'), q > 
1, with integral coefficients. 
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Proof. We rewrite n' by use of equation (30) as an even product of the n + 1 reflections 
p. By applying proposition 11, it can be expressed as a linear combination in the even 
fundamental ascending products of the reflections. Now we observe that from equation (30) 
for q > 1 

= hihi+]. . . hiiq-,. (33) 

It follows from this equation that any even ascending matrix term in the Gi  can be replaced 
by an even or odd ascending matrix term in the hj. Moreover the coefficients in the linear 
combinations may be rewritten in terms of the hj by noting from equation (33) that 

( 5 ' . ~ + 4 ) = f t r ( h i h i + l  q >  1. (34) 

0 

This proposition generalizes the results of Fricke [3,15,16], from the level of characters 
or traces to the level of matrices. 

6. i p ~  acting on Sl(2,  C) 

Let (XI, X Z )  + (gl, g2) be a homomorphism from the free group FZ to Sl(2,  C), and let 
@2 = Aut(F2) act on the images (g1, gz). We shall describe this action with the help of the 
vectors introduced in section 4. The new generators of (P2 and the algebraic treatment of 
reflections yield a new and simplified form of the results given in [6,7,111. 

We showed in section 2 that (P2 is generated by the three involutions cz. c3, q. 

Proposition 13. The generators of @z yield, with respect to the matrices g, the 
transformations 

The first two generators yield transpositions and through them generate the Coxeter group 
Az. The last generator is expressed by a reflection of one of the three vectors (24). The 
action (35) of the group @Z on the three reflections has an exact correspondence to the 
abstract action of @pz by conjugation on the three involutive generators of 'HZ obtained in 
equation (8). 

By Nielsen's theorem [2], under any automorphism of FZ the commutator is transformed 
into a conjugate of itself or of its inverse. The explicit fom.(26), (27) of K allows us to study 
this transformation in detail. For the traces it is easy to see from equation (26) that, under any 
one of the generators equation (35) of @2, the quantity A = -(i/z) tr(g3g1g2) is multiplied 
by a factor (-1). Hence the volume spanned by the three vectors is conserved up to a 
sign under @z, and the usual trace invariant [6] is, from equation (27), tr (K)  = 1 - 2A2. 
Various applications in physics of actions induced from @2 to trace and in particular to 
matrix systems can be treated efficiently with the methods given in sections 4-6. 
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